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We describe a diagnostics system developed, to measure exponential gain properties and the 
electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to 
Infrared SASE Amplifier) FEL. The technical challenges included working inside the small 
undulator gap, optimising the electron beam diagnostics in the high background environment of 
the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial 
results are discussed. 
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The intra-undulator diagnostics system at the VISA 
experiment [l] has a dual purpose: (i) align and 
match the electron beam in the undulator; and (ii) 
to measure the FEL radiation properties along the 
length of the undulator [2]. While the second task 
remains the experimental objective, it is the first 
one that focused most of the attention of the 
authors during the initial stage of VISA 
experiment. For the proper characterisation and 
optimisation of the FEL process, it is necessary to 
measure the electron beam trajectory and envelop 
throughout the length of the undulator, and apply a 
proper correction (for instance to align the electron 
beam to the undulator axis with the 20 pm 
accuracy). 

The VISA experiment utilises a strong-focusing 
undulator [3], with the average electron beam beta- 
function of about 30 cm (Table 1) .  Hence, proper 
diagnostic technique requires sampling period to be 
90 cm or less. To accomplish that, the undulator 
vacuum chamber was equipped with 8 diagnostic 
ports 50 cm apart. OTR and undulator radiation 
probes, alignment lasers, and multiplexing optical 
transport are the major components of the intra- 
undulator diagnostic system. 

2. Diagnostic Probes 
One of the most challenging parts of the VISA 
experiment was the design and fabrication of the 
diagnostic probes. The purpose of the probes is 
both to extract an FEL light out of the undulator 
vacuum chamber, and to enable the electron beam 
imaging (Fig. 1) .  When the electron beam path is 
being intercepted by the outer surface of the probe 
two-sided mirror, the FEL light is being extracted 

8 e-beam 

HI- vacuum 
chamber 

f 
to CCD 

Figure I :  Intra-undulator diagnostic probes 
diagram. 

and directed into the optical transport line. On the 
opposite side, the inner mirror directs the radiation 
through the periscope mirror into the imaging 
system, where the FEL light is being filtered out 
and the OTR from the mirror surface is used to 
generate an image of the electron beam. 

The miniature openings inside the undulator gap 
(3.6 mm x 9 mm) put a very stiff limitation on the 
size of the probe tips. Initially, to maximise the 
two-sided mirror surface, we built probes with a 
marginal thickness of 3.3 mm. In addition to the 
difficulties with the probe insertion in the undulator 
gap, it turns out that the bellow-coupled vacuum 
feedthroughs used to actuate the probes tend to tilt 
after the pump-down, and as a result, the probe tip 
may not clear the opening, which is not acceptable 

Table 1: Relevant parameters for VISA FEL 
Nominal Beam Energy I 71MeV 
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for many reasons. Hence, the latest design utilises 
2.3 mm thick probe tips. It is very difficult to 
polish laser quality mirrors of that size; therefore, 
the original copper mirrors were replaced with the 
soft silicon once, polished to h/10. The mirror 
polishing has been performed at LLNL, and the 
probe fabrication was done at SLAC and BNL. 

Another important change in the diagnostic 
system is the use of optical transition radiation 
(OTR) for beam imaging, instead of the YAG 
crystals originally proposed. The experimental 
study [4] at ATF (Accelerator Test Facility) 
demonstrated, that the YAG crystal scintillators get 
saturated by the high brightness electron beam 
(beam of quality identical to the VISA design 
parameters). As a result, information about the size 
and shape of electron bunches, which is critical to 
analyse the FEL performance, can not be obtained 
from YAG images (Fig. 3), which consistently 
overestimate the beam radius. To avoid this 
problem we have to use OTR diagnostics, which 
provides correct information about the beam 
transverse profile. However, the OTR has a 
disadvantage of lower intensity. Indeed, the OTR 
intensity is few orders of magnitude smaller than 
the undulator radiation within the bandwidth of the 
CCD camera; hence we need to filter the undulator 
radiation in order to obtain a usable OTR image. 

Figure 3: Images of the same electron beam, 
taken with 4 different methodr. Comparison 
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Fortunately, linear polarisation and harmonic 
spectral structure of the undulator emission allows 
to surpress it with respect to the radially polarised 
broad band OTR (Fig.2). At the present, the cold 
mirror periscope in the imaging optics provides 2 
orders of magnitude noise reduction. In the future, 
if necessary, we plan to use polarising cubes to 
have even smaller fraction of the FEL light to enter 
the imaging optics. Another “side-effect’’ of the 
low intensity OTR implementation is that to get a 
clear performance the total resolution of the 
imaging system had to be changed from 4 pdpixel  
as designed, up to 10 pdpixel. 

3. Alignment Laser System 
Once the imaging system operates, the electron 
beam can be matched into the undulator. Yet, for 
the trajectory studies [5 ] ,  it is necessary to have a 
reference line. A diode laser system is used to 
provide a reference line for the electron beam, and 
also to help with the alignment of optical 
components. 

To this end we use a fiber-coupled diode laser at 
632 nm, providing a single mode output, which we 
focus at the middle of the undulator, located 6 m 
away. Even if we are diffraction limited, we can 
achieve sub-millimeter spot sizes throughout the 
whole length of the undulator. CCD cameras on 
both sides of the undulator are used to monitor and 
periodically realign the reference laser beam line. 
This line is integrated into the interferometric 
undulator alignment system [6], to overlap the 
magnetic axis of the undulator. Once aligned, the 
laser is found to be stable within 20-30 microns 
from shot-to-shot. That is less than the typical 
horizontal jitter of the electron beam at the ATF, 
which is generally small due to the use of the 
energy collimator after the linac section [7]. 

The transport line for the FEL light consists of an 
imaging lens array to multiplex the radiation beam 
extracted from the different diagnostic ports [2 ] .  
As any system with the large number of optical 
elements, our optical transport line requires a 
narrow band coating (TLSapphire); hence, an 
additional diode laser at 820 nm was added for 
optical alignment purposes. The two laser lines are 
collinear by virtue of a cold mirror. 
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